Building Municipal Infrastructure Transportation Industrial Power Environment

Sustainable solutions in engineering

Variability of Power from Distributed Wind Facilities in Montana

Andre Shoucri, Project Manager, GENIVAR
November 13, 2008

Project History

- December 2005: Invenergy Judith Gap Commissioning
- April 2006: NWE encounters first performance violation
- Fall 2006: NWE procures regulating service
- Spring 2007: NWE and wind industry approaches GENIVAR

Project Overview

Part 1: Wind Power Variability Analysis

- Wind data collected from participating developers
- 3 wind development scenarios capture effect of future development plans (as proposed)
- 3 wind development scenarios capture effect of geospatial distribution (hypothetical)
- Results from all 6 scenarios presented here

Part 2: NWE Dispatch Simulation

- The Alberta Electric System Operator (AESO) developed a system dispatch time-simulator
- GENIVAR adapted the simulator from AESO's operating parameter to NWE's
- Impact of all 6 wind development scenarios on system operations were evaluated
- Wind forecasting and additional regulating reserves were explored as mitigating measures

Objective

- Simulate 10 minute wind power time series for a facility GENIVAR Variability Model
- Simulate 1 minute wind power time series for a facility Statistical approach
- Summarize variability of both 1-minute and 10-minute series

Significance

- Variability statistics developed for various growth scenarios
- Variability statistics developed for various geographical dispersion scenarios
- Simulated 1-minute wind power is input to the NWE Dispatch Simulation to asses grid operation impact

Model Inputs

- Wind speed measured at proposed development sites
- A standard power curve for a single turbine
- Nameplate capacity of the facility
- Dimension of the facility

Methodology

- Per Norgard and Hannele Holttinen, A Multi-Turbine Power Curve Approach. Proceedings of Nordic Wind Power. Conference NWPC, 2004
- Moving Average Wind Speed
- Multi Turbine Power Curve
- Adjust annual power production
- Apply weighted moving average wind speed to Multi-Turbine Power curve for 10-minute power time series
- 1-minute power time series modeled
- Time series of individual facilities combined to generate state-wide development scenarios
- Inspect time series and summarize variability

Validation

- Validation was not performed for Montana
- Extensive validation performed for Alberta
- Facility Validation
- Regional Validation

Scenario Description

- Historical: Scenario A (for dispatch model validation only)
- Proposed Future Developments:
 - Scenarios were based on projected on-line dates of projects under development, regardless of locations within the state
 - Scenario B: 358.5MW, includes Scenario A plus at least 3 new projects (more dispersion than A)
 - Scenario C: 741MW, includes Scenario B plus at least 3 new projects (more dispersion than B)
 - Scenario D: 1450MW, includes Scenario C plus at least 3 new projects (less dispersion than C)
- Hypothetical Developments: Scenario E, Scenario F, Scenario G
 - Designed to capture advantage of regional diversity

Results: Proposed Scenarios, 10-minute model

Results: Proposed Scenarios, 10-minute model

Results: Hypothetical Scenarios, 10-minute model

Objective

- Simulate NWE method of system dispatch
- Input simulated wind power from Part 1 while maintaining same dispatch methods. Assess impact of additional wind power
- Evaluate mitigation methods: wind power forecasts and additional regulating reserves

Significance

Guide NWE in planning for new wind power installations

Challenge

Adapting original AESO model to capture NWE system operations

Model Inputs

- Simulated Wind Power
- Historical system load, load forecast, and interchange schedule
- NWE System operational parameters (including regulating range and rates, conventional generation capacity and rates, interchange schedule and limits)

Methodology

- Methodology developed by Alberta Electrical System Operator (AESO)
- Overall simulation approach maintained but specific algorithms were adapted to reflect NWE operations
- Validate by running simulation with historical data and comparing to actual performance
- Establish Benchmark: historical system data with current regulating and interconnect capacities
- Evaluate system response for all 6 wind development scenarios
- Evaluate wind forecasting as a mitigation method
- Evaluate increased regulation capacity as a mitigation method

Performance Standards Definition

- ACE: Area Control Error is the instantaneous discrepancy between supply and net demand; which can be equally quantified as the difference between actual interchange and scheduled interchange.
- CPS2: a statistical measure designed to limit unacceptably large net unscheduled power flows.
- The following chart shows the ACE, L_{10} band, and average ten-minute ACE for a 30 minute period. The second ten-minute average is in violation since it exceeds L_{10} .

Dispatch Simulation Validation

Time Series comparison of simulated and historical energy dispatch

Dispatch Simulation Validation

- Time Series comparison of simulated and historical energy dispatch
- Time Series comparison of simulated and historical ACE

Dispatch Simulation Validation

- Time Series comparison of simulated and historical energy dispatch
- Time Series comparison of simulated and historical ACE
- Comparison of simulated and Historical CPS2

Dispatch Simulation Results

Benchmark Scenario was established: historic wind development but current regulating capacity

Dispatch Simulation Results

- Benchmark Scenario was established: historic wind development but current regulating capacity
- Proposed development scenarios: CPS2 rating decreases with increased wind power capacity

Dispatch Simulation Results

- Benchmark Scenario was established: historic wind development but current regulating capacity
- Proposed development scenarios: CPS2 rating decreases with increased wind power capacity
- Hypothetical development scenarios: CPS2 rating decreases with increased wind power regional concentration

Dispatch Simulation: Wind Forecasting Mitigation

- Simulated incorporated three wind forecasting method
 - Persistent Forecast: average wind power for next dispatch interval equal previous interval
 - Persistent Ramp Forecast: change in average wind power to next dispatch interval equal to change to previous interval
 - Perfect Forecast: average wind power for next dispatch interval taken directly from simulated wind power time series

Dispatch Simulation: Wind Forecasting Mitigation

- General Result:
 - Perfect Forecast had best results in CPS2 rating
 - Persistent Forecast had next best results in CPS2 rating
 - Persistent Ramp Forecast had worst results in CPS2 rating

Dispatch Simulation: Regulating Capacity Mitigation

General Approach: Determine the increase in regulating capacity required to maintain certain CPS2 rating

Wind Scenario*	Factor of Current Wind Capacity	Factor of current RRR ⁺ for CPS2 of at least 90% for all months	Factor of current RRR for CPS2 of at least 91% for all months	Factor of current RRR for CPS2 of at least 94% for all months
A	1.00	1.00	1.00	1.44>
В	2.49	1.00	1.00	1.68>
C	5.15	1.36	1.56	2.15
D	10.07	2.74	3.02	4.32
Е	10.07	2.54	2.73	4.05
F	10.07	3.37	3.68	4.67
G	10.07	3.84	4.12	5.44

122.4MW RRR 142.8MW RRR

General Result:

- Required additional RRR increased with increase of wind power capacity
- Required additional RRR increased with increase of wind power regional concentration

^{*}For this analysis, wind scenarios were modeled with persistent forecasting method

⁺RRR: abbreviation for Regulating Reserve Range. The current range for NWE is 85MW

Dispatch Simulation: Regulating Capacity Mitigation

Sensitivity Analysis: CPS2 Rating for Scenario A with current RRR compared to Scenario B with +20MW RRR

Caution: Required RRR increase for Scenario A to B growth may not be proportional for other growth increments

Conclusion

Impact of wind development scenarios to variability

- Variability in terms of magnitude increases with increased wind capacity
- Variability in terms of percentage capacity decreases with increased wind capacity
- Variability in terms of magnitude decreases with increased regional diversity for a constant wind capacity

Impact of wind development scenarios to NWE system performance

- CPS2 ratings decrease with increased wind capacity
- CPS2 ratings increase with increased regional diversity for a constant wind capacity

Impact mitigation methods

- "Perfect Forecasting" was most effective in improving simulated CPS2 ratings
- Additional RRR improves CPS2 ratings
- Required additional RRR increased with increase of wind power capacity
- Required additional RRR increased with increase of wind power regional concentration

Building Municipal Infrastructure Transportation Industrial Power Environment

Sustainable solutions in engineering

Moving Average Wind Speed

$$v_{j} = \frac{1}{N+1} \sum_{i=j-\frac{N}{2}}^{j+\frac{N}{2}} w_{i-j+\frac{N}{2}+1} v_{i}$$

$$N = T / \Delta t$$

 v_i : jth element of the moving average wind speed

 v_i : ith element of the original wind speed

 $\it w$: normalized vector of length N+1, each element is the weight of the ith element in moving average wind speed

N: number of points around the $j^{\rm th}$ included in each averaging process (even integer)

T: propagation time

 Δt : time step in the original wind speed

Spatial Wind Speed Distribution

Next

Multi-Turbine Power Curve

$$P_j^m = \sum_i P_{j+i}^s \times p_i^s$$

 P_i^m : jth element of the multi-turbine power curve

 P_{i+i}^{s} : (j+i)th element of the single-turbine power curve

 p_i^s : probability of occurrence of the wind speed corresponding to the normal spatial distribution. Standard deviation of normal

distribution is proportional to park dimension

distribution is proportional to park dimension

<u>Next</u>

Multi-Turbine Power Curve

1-Minute Model

Procedure:

- Take 10-minute wind power time series
- Linearly interpolate two successive 10-minute wind power outputs
- Introduce random perturbations
- Random perturbations are 10 randomly generated numbers with a normal distribution and specified standard deviation
- Specified standard deviation is one sixth of the difference between the two successive 10-minute power intervals (empirical value)

Facility Time Series Validation

Time Series of Measured and Simulated Wind Power Fluctuations Measured Simulated MW 40 30 Apr04 30-Mar-2004 01:10:00 --- 01-Apr-2004 03:10:00

Next

10-Minute Facility Fluctuation Validation

Regional Time Series Validation

Time Series of Measured and Simulated Wind Power - Measured Simulated 160 140 Power (MW) Nov. 21 - Nov. 27, 2004 (10-minute)

Next

10-Minute Regional Fluctuation Validation

Hypothetical Scenarios

Region	Scenario E	Scenario F	Scenario G
Region 1	362.5 MW	625 MW	100 MW
Region 2	362.5 MW	625 MW	1150 MW
Region 3	362.5 MW	100 MW	100 MW
Region 4	362.5 MW	100 MW	100 MW
> TOTAL	1450 MW σ=0	1450 MW σ=303	1450 MW σ=525

Equivalent capacity to Scenario D

Dispatch Simulation Model

Control decision every 60 minutes **Existing control deviation** •Current ACE •Current RR usage Decision for next 60 minutes **Expected Load change** •Day-ahead forecast **Interchange Schedule change** Control instruction threshold If dispatch change within +/-20MW, no instruction is made **Expected wind generation** •Persistent wind forecast (no change in next 60 minute) Persistent ramping forecast Perfect point forecast

1-minute simulation

Energy market response for each minute

- Ramping starts 10-min before the hour and ends 10-min after the hour and is subject to ramping limit
- •Energy market then holds level for 40-min

Calculate the mismatch after dispatch

between the energy market dispatch and net demand (Load + ScheduledInterchange – WindGeneration)

Calculate required regulating reserve level

To balance the mismatch, subject to available regulating reserves (up & down) and ramping limit

Calculate the remaining mismatch

[energy market dispatch + regulating reserve dispatch] and [Load + Scheduled Interchange – Wind Generation] as **ACE** and the simulated interchange

Calculate operation reliability index: CPS2

